If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2+15p=0
a = 7; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·7·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*7}=\frac{-30}{14} =-2+1/7 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*7}=\frac{0}{14} =0 $
| x-(=75)=25 | | 122-x=206 | | 3x-6+6=54 | | 7p^2+11p+4p=0 | | 7-3x=3x+10 | | -8+10k=52 | | |3x-6|+6=54 | | 100=-16t^2-96t+12 | | 6x-1=x-13 | | 10=(5h+4)= | | 12x2^-240x+900=0 | | y+19/5=8 | | 34+9=c | | 4x-5=6-3x | | 2x^2+x-1/x^2-1=0 | | 2x^2+x-1/x^2-1=0. | | 10+14=c | | 5(5q+2)=3(5q+2)= | | 2x^2+4x-320=0 | | 18=13+n=-9 | | (2x+5)(6x-3)=0 | | 2a²+4a+16=0 | | |6-x|=54 | | 32=2a,a= | | y-y4+3=30 | | 10n/2=7n+14 | | 37n^2-24n=0 | | 8+2x=2(-x+7)-26 | | 0.562=2378x+0.003 | | 5^2x=5^x+1-6 | | x/9+5=-4 | | 50+3x=8 |